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Abstract

Predicting the impact of climate change on the damage niche of an agricultural weed at a local scale requires a pro-

cess-based modelling approach that integrates local environmental conditions and the differential responses of the

crop and weed to change. A simulation model of the growth and population dynamics of winter wheat and a compet-

ing weed, Sirius 2010, was calibrated and validated for the most economically damaging weed in UK cereals, Alopecu-

rus myosuroides. The model was run using local-scale climatic scenarios generated by the LARS-WG weather

generator and based on the HadCM3 projections for the periods 2046–2065 and 2080–2099 to predict the impact of

climate change on the population dynamics of the weed and its effect on wheat yields. Owing to rising CO2

concentration and its effect on radiation use efficiency of wheat, weed-free wheat yields were predicted to increase.

The distribution of the weed was predicted to remain broadly similar with a possible northward shift in range.

Local-scale variation in the impact of climate change was apparent owing to variation in soil type and water holding

capacity. The competitive balance was shifted in favour of the deeper rooted crop under climate change, particularly

on sites with lighter soils, owing to more frequent and severe drought stress events. Although the damage niche of

A. myosuroides was predicted to reduce under climate change, it is likely that weeds with contrasting physiology, such

as C4 species, will be better adapted to future conditions and pose a more serious threat.
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Introduction

Modelling the impact of climate change on the geo-

graphical range of a species and its potential to invade

new habitats will require a hierarchical, interdisciplin-

ary approach (Pearson et al., 2004; Bradley et al., 2010;

Kueffer, 2010). The method used to model a system,

from correlative or bioclimatic envelope models (also

known as species distribution or niche-based models)

to complex, mechanistic process-based models, will be

dependent on scale and, where appropriate, will

require integrated approaches (Morin & Thuiller, 2009).

Underlying this challenge is the fact that the number of

drivers that need to be incorporated into models of bio-

logical community assembly increase as scale

decreases. At global or continental scales, climatic vari-

ables can be assumed to be the primary drivers, but at

the regional or local scales, site-specific environmental,

management or biological variables become increas-

ingly important (Pearson & Dawson, 2003). Although

bioclimatic envelope models are a useful first approxi-

mation to the present and future range of a species,

they are open to criticism when applied at smaller

scales because they do not account for barriers to dis-

persal, local soil or management factors, biotic interac-

tions and the capacity of species to adapt to new

environments (Davis et al., 1998, 2005; Thuiller et al.,

2008). Modelling these multiple factors, however,

requires a process-based approach with the associated

demands on data collection andmodel parameterization

– a challenge previously described as the tractability/

complexity trade-off (Thuiller et al., 2008).

Climate change is anticipated to have important

implications for agricultural productivity (Howden

et al., 2007; Jaggard et al., 2010). Among the factors that

may be affected are the incidence of pests and diseases.

Predicting shifts in the distribution and impact of agri-

cultural weeds under climate change will, therefore, be

an important consideration in designing strategies for

adaptation (Patterson, 1995; Mcdonald et al., 2009;

Clements & Ditommaso, 2011). In addition to the

economic importance of quantifying the impact of

climate change on yield loss from weeds, the arable

system also represents an ideal system for developing

the integrated modelling approach to predicting the
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response of plant communities discussed above.

Because the cropped field is highly regulated through

management, modelling the biological processes is

more tractable, and there is the potential to address the

limitations that currently hinder the application of pro-

cess-based models to predicting the impact of climate

change on plant communities at a regional or local

scale. First, in contrast to semi-natural habitats that are

characterized by a complex web of biotic interactions

between multiple plant and animal species (Araujo &

Luoto, 2007), arable fields are dominated by a single

crop species with a small number of competing weeds,

and herbivore pressure is minimized by the use of pes-

ticides. The complexity of modelling the impact of cli-

mate change on biotic interactions is, therefore,

reduced to the relatively simple challenge of quantify-

ing changes in crop-weed competitive dynamics in

response to climatic perturbations. A number of pro-

cess-based, weather-driven models have recently been

validated that predict the impact of weeds on crop

yield and the concomitant effects on weed biomass and

population dynamics (Kropff & Spitters, 1992; Debaeke

et al., 1997; Deen et al., 2003). These models have pri-

marily been developed as an agronomic tool, but the

extensive experimental work that has been done to

quantify the required eco-physiological parameters

makes them ideally suited to predict the response of

weeds to climate change at the regional or local scale.

The concurrent independent development of crop sim-

ulation models, which have been used to investigate

the impact of climate change on crop growth, develop-

ment and yield (Semenov et al., 1996; Jamieson et al.,

2000; Ewert et al., 2002; Semenov, 2009; Semenov &

Shewry, 2011), also means that the biological context

for modelling weed dynamics is well parameterized.

A second challenge to the development of process-

based models of the response of plant communities to

climate change is the complexity of spatial dynamics.

Bioclimatic envelope models generally assume no or

unlimited migration and are, therefore, unable to

account for limited dispersal abilities or barriers to

range expansion due to, for example, habitat fragmen-

tation (Collingham et al., 2000; Thuiller et al., 2008).

Again, to incorporate dispersal into a mechanistic, spa-

tially explicit model within a heterogeneous landscape

requires a substantial input of data on demographic

processes many of which may be unavailable (Thuiller

et al., 2008). Arable systems have a number of advanta-

ges which make this problem of accounting for spatially

dependent processes tractable. First, agricultural weeds

are characterized by a ruderal ecological strategy. They

are usually small seeded, fecund and fast growing. This

makes them well adapted to widespread dispersal to

take advantage of ephemeral habitats that may be

created by disturbance. Weed seeds are also regularly

transported between localities on farm machinery, fur-

ther aiding the spread of weeds in the landscape (Hum-

ston et al., 2005). Second, agricultural landscapes are

relatively simple with large contiguous areas of culti-

vated land resulting in a continuity of suitable habitat

for weeds. It is, therefore, reasonable to assume that on

a regional or local scale, any newly available niche will

be colonized well within the time-scale within which

climate change scenarios are generally framed.

In this paper, we demonstrate the potential for model-

ling the impact of climate change on the distribution of

agricultural weeds and consequent crop yield loss (or

damage niche) using Alopecurus myosuroides Huds.

(black-grass) in winter wheat (Triticum aestivum L.) as a

model system. Alopecurus myosuroides is among the most

economically important weeds in terms of yield losses

incurred in western European cereal production and is

becoming increasingly problematic because of the devel-

opment of resistance to a number of herbicide groups

(Moss et al., 2007). Within the United Kingdom, the spe-

cies is largely confined to cereal growing areas in the

south and east of the country with a clear northern limit

to its current distribution (Preston et al., 2002; Fig. 1).

Alopecurus myosuroides has been the focus of extensive

applied research, and a number of models, of varying

complexity, have been developed to predict its competi-

tion with the crop and population dynamics (Moss,

1985; Storkey et al., 2003; Colbach et al., 2007). We com-

bined published algorithms for modelling the impact of

weather and the environment on different stages of the

weed life cycle and inter-plant competition (Kropff &

Spitters, 1992) with a process-based model of crop

growth and development (Jamieson et al., 1998) draw-

ing on experimental data across multiple years and sites

to calibrate and validate the final model. The model is

applied to the United Kingdom using regional data on

soil properties and local-scale climate scenarios derived

from a stochastic weather generator (WG) and based on

climate projection from the Met. Office Hadley Centre

Global Climate Model (HadCM3) (Semenov & Strato-

novitch, 2010; Semenov et al., 2010). In so doing, we pre-

dict the shift in the realized niche for A. myosuroides in

the United Kingdom in terms of population growth rates

(k) and the expected crop yield loss or ‘damage niche’ of

the weed (sensuMcdonald et al., 2009).

Materials and methods

Modelling plant growth and competition for light, water
and nutrients

Sirius 2010 is a crop simulation model capable of modelling

inter-plant competition for light, water and nutrients and crop
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yield. It is based on the original Sirius wheat model (Jamieson

et al., 1998; Jamieson & Semenov, 2000; Lawless et al., 2005)

with elements of the INTERCOM model of crop-weed compe-

tition (Kropff & Spitters, 1992). Sirius 2010 simulates plant

growth and development at a daily time-scale within a uni-

form field. Plants of different species are described as a collec-

tion of organs (roots, leaves, stems, flowers and seeds)

collectively competing for light, water and nitrogen. A single

cohort represents all individual of the same species germi-

nated at the same time.

The canopy consists of leaves, stems and flowers from all

cohorts. Each of these organs has a vertical position within the

canopy (offset from ground) and is described by different light

characteristics (e.g. light extinction coefficient). Light is inter-

cepted by the canopy following a Beer–Lambert law. To

account for light competition, the canopy is split vertically in

thin layers of size cls (5 cm). The light absorbance of the organ

o, in the layer l of the canopy is related to the organ light

extinction coefficient (kl, dimensionless) and the organ area

density (ad, m�1) in this layer:

a l; oð Þ ¼ kl oð Þ � ad l; oð Þ � cls:

The entire canopy absorbance in this layer l is

a lð Þ ¼
Xnc
c¼1

XnoðcÞ
o¼1

aðl; oÞ;

where nc is the number of cohort and no(c) is the number of

organ of the cohort c.

Radiation (r, MJ m�2) intercepted by the canopy in the layer

l is calculated from the daily photosynthetically active radia-

tion (par, MJ m�2):

r lð Þ ¼ par� ðe�
Pnl

m¼l
aðmÞ � e�

Pnl

m¼lþ1
aðmÞÞ;

where nl is the number of canopy layer.

The amount of radiation absorbed by the organ o in the

layer l is related to its absorbance:

r l; oð Þ ¼ r lð Þ � a l; oð Þ
a lð Þ :

The total amount of radiation absorbed by the organ o is the

sum of radiation absorbed in each layer where the organ is

present:

r oð Þ ¼
XtlðoÞ

l¼blðoÞ
r l; oð Þ;

where bl(o) and tl(o) are, respectively, the index of the bottom

and top layer of the organ o.

We calculated daily potential dry mass assimilation by an

organ (pa, g (DM)) using the daily radiation use efficiency

(rue, g (DM) MJ�1 m2):

pa oð Þ ¼ r oð Þ � rueðoÞ:
Radiation use efficiency incorporated the plant assimilation

responses to daily and global environmental variables and

was affected by atmospheric CO2 concentration (fCO2
, dimen-

sionless), temperatures (fT dimensionless) and water stress

(fW, dimensionless):

rue oð Þ ¼ lueðoÞ � fCO2
� fT � fW;

where fCO2
increases with atmospheric CO2 concentration

([CO2] ppm) by 30% for a doubling of [CO2] compared with

the baseline [CO2] of 350 ppm:

fCO2 ¼ 1þ 0:3� ½CO2 � 350�
350

:

A similar response has been used by other wheat simulation

models e.g. CERES (Jamieson et al., 2000) and EPIC (Tubiello

et al., 2000). The temperature and water stress responses are

calculated as in Ewert et al. (2002). Competition for soil

resources is handled from top to bottom, splitting soil layer

resources between cohorts according to their demand. At the

soil layer l, the amount of resources demanded by the cohort

c is

d l; cð Þ ¼ d cð Þ �
Xl�1

i¼1

uði; cÞ;

where d(c) is the daily total demand of the cohort c, u(i, c) is

the uptake of cohort c on the soil layer i. The amount of

resources received by the cohort c from the soil layer l when

nc cohort are competing is proportional to its demand:

uðl; cÞ ¼
0; dðl; cÞ ¼ 0

dðl;cÞPnc

i¼1
dðl;iÞ � dðl; cÞ; dðl; cÞ > 0

(

The total amount of resources obtained by the cohort c on

from the soil is

u cð Þ ¼
XnslðcÞ
l¼1

u l; cð Þ;

where nsl(c) is the number of soil layer accessible by the

cohort c.

Experimental data for model calibration and validation

The model parameters were calibrated using data collected as

part of a series of experiments done at Rothamsted Research

(Hertfordshire, UK) to measure the eco-physiological traits of

a range of UK weeds (Storkey, 2006). Alopecurus myosuroides

populations were broadcast by hand into small experimental

plots (3 9 3 m) immediately prior to a crop of winter wheat

being drilled at 300 seeds m�2. The weed was thinned to 50

plants m�2 in a central 1 m2 area at the centre of each plot.

There were three replicate plots and the experiment was

repeated in 3 years with the following sowing dates: 27 Sep-

tember 2001, 17 October 2002 and 29 September 2004. In each

year, at intervals of approximately 4 weeks, five plants per

plot were sampled and divided into leaf, stem and heads. Leaf

and stem area was measured using a Delta-T WinDias leaf

area metre (Cambridgeshire, UK) and the separate plant parts

dried for 24 h at 80 °C and weighed. At each sampling date,

the height of the five individual weed plants was also mea-

sured. The time of first flowering was recorded from regular

field visits.

A separate dataset of crop/weed competition measured at

six sites in the United Kingdom over 3 years was used to

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2071–2080

WEEDS AND CLIMATE CHANGE 2073



validate the model. The experiment sites represented a range

of soil types (Table S1, Supporting Information) and the exper-

iments were carried out in the seasons 1994/1995, 1995/1996

and 1996/1997 – the site at Woburn was only used in the first

year. All experiments were of a randomized block design with

three replicates. The experimental sites were cultivated using

best local practice to produce good seed-beds, and the plots

were sown at the very end of September or in October (Table

S1, Supporting Information). Six different densities of A. myos-

uroides were broadcast by hand onto the plots immediately

prior to a crop of winter wheat being drilled; target weed den-

sities were 0, 40, 80, 160, 320, 640 plants m�2. Plot sizes varied

to fit in with the local farm practice but were typically 24 m2.

The density of weed and crop seedlings was assessed after

establishment in the autumn by counting the number of weed

plants in ten 0.25 m�2 quadrats per plot. Crop density was

assessed by counting individual plants in ten 1 m rows

selected at random in weed-free plots only. A series of

destructive samples (usually five per season) were taken

throughout the growing seasons from 0.5 m² areas within each

of the plots. Crop and weed were separated and leaf areas

were measured using the leaf area metre. The samples were

then dried at 80 °C for 24 h and dry weights determined.

Yields and components of yield were assessed at maturity by

hand harvesting 2 m² areas. The samples were threshed and

the wheat grain was cleaned and dried. Yields were expressed

at 85% dry matter.

Assessing dynamics of weed populations and
competiveness

We assessed the impact of local environment and weather on

A. myosuroides populations by calculating parameter k which

is a ratio of sizes of the weed seed bank at the end and begin-

ning of the growing season (after crop harvest). The number

of seed germinating is given by

g ns0ð Þ ¼ gr � ns0 � d

dmax
;

where gr is a germination rate, ns0 is an initial seed number, d

is the maximal depth at which seeds germinate and dmax is the

depth of the seed bank (25 cm). With a constant herbicide

efficiency h, the number of plant p growing in the weed cohort

is

p ns0ð Þ ¼ g ns0ð Þ � h:

The number of seeds produced pr by this cohort is calcu-

lated by running Sirius 2010 for a given farming practice, a

geographical location, soil characteristics and a yearly set of

weather variables:

pr ns0ð Þ ¼ Sirius p ns0ð Þð Þ:
Part of this seed production l is lost due to predation or dis-

persal according to the loss rate lr:

l ns0ð Þ ¼ pr ns0ð Þ � lr:

At the end of the year, a number of old seeds de in the seed

bank will die according to the seed persistency spr (year):

de ns0ð Þ ¼ ns0 � g ns0ð Þð Þ
spr

:

So the number of seeds ns1 for a given weed at the end of

the year is

ns1 ¼ ns0 þ pr ns0ð Þ � l ns0ð Þ � de ns0ð Þ;
and the change in the local population size k can be calculated

as follows:

k gr; h; lrð Þ ¼ ns1
ns0

The computation of k depends on several stochastic factors.

The interactions between seed dormancy characteristics,

weather and the local soil conditions that drive the proportion

of the seed bank that germinates are complex and difficult to

predict. Therefore, we modelled the germination rate as a sto-

chastic variable with a distribution derived from experimental

data (Fig. S1, Supporting Information). Second, the number of

fresh seeds lost is affected by numerous random factors such

as predation, weather or harvest method and was also mod-

elled as a stochastic variable following a Gaussian distribu-

tion. Finally, to assess the effect of climatic variability, k must

be calculated over many years of daily site-specific weather.

To estimate the change in weed populations, we computed

Λ as an average of log(k) by sampling N times from distribu-

tions for germination and seed loss rates as well as weather

for the growing season:

K ¼
P

i\N log kið Þ
N

:

The size of the seed bank after y years can be asymptotically

estimated as

nsy ¼ ns0 � eKy:

Local-scale climate scenarios

Local-scale climate scenarios were based on the output from

the HadCM3 global climate model from the multimodel

ensemble of global climate models created by the Coupled

Model Intercomparison Project (phase 3, CMIP3) (Meehl et al.,

2007), which was used in the IPCC 4th Assessment Report

(Solomon et al., 2007).

However, the direct use of climate predictions from GCM

in conjunction with a process-based impact model, such as Sir-

ius, is not possible. The coarse spatial resolution of GCM of

200–300 km results in significant errors and large uncertainty

in their output at a local scale, particularly for precipitation

(Knutti et al., 2010). Various downscaling techniques have

been developed to underpin studies on regional and local-

scale impact assessments, including dynamic downscaling by

regional climate models (Jacob et al., 2007), statistical down-

scaling (Wilby et al., 1998) and WGs (Wilks, 1992; Semenov &

Barrow, 1997). In the present study, we used the methodology

based on the LARS-WG (Semenov & Stratonovitch, 2010;

Semenov et al., 2010).

A stochastic WG is a model which, after calibration of site

parameters with observed weather data for that site, is capable

of simulating synthetic time-series of daily weather that are

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2071–2080
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statistically similar to observed weather (Richardson, 1981;

Wilks & Wilby, 1999). By altering the baseline site parameters

using changes in climate predicted by GCM, it is possible to

generate synthetic daily weather for the future. The use of WG

in climate change studies allows exploration of the effect of

changes in mean climate as well as changes in climatic vari-

ability and extreme events (Porter & Semenov, 2005; Semenov,

2007). For our study, we selected climate projections from

HadCM3, the global climate model developed at the Hadley

Centre of the UK Met. Office for the A1B emission scenario

(Nakicenovic & Swart, 2000) and the time periods 1960–1990

(baseline) 2046–2065 (2055A1B) and 2080–2099 (2090A1B)

(Pope et al., 2000). Hundred years of daily weather were gen-

erated for 18 sites in the United Kingdom (Table S2, Support-

ing Information) for each climate scenario, baseline, 2055A1B

and 2090A1B.

Simulation setup

We configured the soil parameters for the 18 UK locations

according to LandIS data (http://www.landis.org.uk). We

prepared, using LARS-WG, 100 years of site-specific daily

weather for each of the three climate scenarios studied. To

compute Λ index for a given location and weather scenario,

we generated N = 1500 yearly simulations by using the

100 years of weather repeatedly and sampling germination

rate from the empirical distribution (Fig. S1, Supporting Infor-

mation) and sampling rates of losses of fresh seed from a nor-

mal distribution of mean 0.4 and standard deviation 0.1. A

constant herbicide efficiency was used h = 0.95.

Results

The current distribution of A. myosuroides is the product

of the interaction between land use, soil properties and

climate (Fig. 1). The majority of establishment is in the

autumn as opposed to the spring and the weed is,

therefore, largely associated with areas of winter cereals

which are concentrated in the south and east of the

United Kingdom. However, there also appears to be a

climatic constraint to the northward spread of the

weed. The predictions of the effects of weather on the

distribution and impact of A. myosuroides in winter

wheat were based on environmental variables from 18

sites in the United Kingdom and the maps of Λ, yield
and yield loss were generated by interpolating between

these points (Fig. 2). The Northern and Western limit of

the weed was accurately described in the model using

baseline conditions (Fig. 2a); phenological parameters

including thermal time required to reach maturity were

identified as being the variables currently limiting the

northwards spread of the weed (Fig. 3). The baseline

model also accurately reflected current UK yields of

winter wheat (the national average was 7.9 t ha�1 in

2009, http://www.fao.org) under weed-free conditions

(Fig. 2d) and the expected yield loss from A. myosuro-

ides (Fig. 2g) which is of the order of 0.4% plant m�2

(Storkey et al., 2003). Finer scale variation under base-

line conditions was related to soil type with higher val-

ues for Λ and yield loss in the southeast where soils

have a higher clay content and reduced drought stress

(Fig. S2, Supporting Information). The model per-

formed well when validated against independent data-

sets of weed productivity and eco-physiological traits

measured across a range of environments (Figs S3 and

S4, Supporting Information).

The regional effect of soils on the national distribu-

tion of A. myosuroides became more pronounced under

the scenarios for climate change, particularly the

2055A1B simulation (Fig. 2b). The effect of the

increased frequency and severity of summer droughts

was predicted to be greater on soils with a lower water

retention capacity (Fig. 4a). There was also an indica-

tion that the higher average temperatures in northern

England and Scotland may facilitate the spread of

A. myosuroides northwards in the United Kingdom. As

well as a general increase in the productivity and fit-

ness of A. myosuroides populations, increased tempera-

tures and CO2 resulted in higher national wheat yields

in weed-free scenarios (Fig. 2d–f).
There was a more consistent regional effect of climate

change on the damage niche of the weed defined by the

percentage yield loss (Fig. 3g–i). Under the two climate

change scenarios, but particularly 2090A1B, the

Fig. 1 UK distribution of Alopecurus myosuroides Huds. from a

series of national vegetation surveys at the hectad scale (after

Preston et al., 2002).
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competitive balance between the crop and the weed

was predicted to shift in favour of the crop. As a conse-

quence, percentage yield loss from A. myosuroides was

predicted to decrease in the future. The changing

dynamics of the interaction between the two species

was a product of differential response to climate

change. Both species are C3 species belonging to the

Poaceae and area therefore similar in terms of their

photosynthetic response to increased temperature and

CO2. However, there are subtle differences in interaction

of development and moisture stress. While both species

are predicted to germinate earlier under climate change

as a result of increased temperature, this effect is pre-

dicted to be marginally greater for the crop (Fig. 3). As

a result, the crop gains a competitive advantage early

in the season. Alopecurus myosuroides is shallower root-

ing than the crop and this is captured in the model by

contrasting functions for root function (Fig. 4b). As a

consequence, A. myosuroides generally has a higher

drought stress index, although the magnitude of this

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Output of Sirius 2010 for 18 sites interpolated across the United Kingdom for population change of Alopecurus myosuroides (k)
using weather data generated under (a) baseline, (b) 2046–2065 and (c) 2080–2099 conditions, wheat yield under weed-free conditions

for (d) baseline, (e) 2046–2065 and (f) 2080–2099 weather and percentage yield loss from weed competition or the ‘damage niche’ using

(g) baseline, (h) 2046–2065 and (i) 2080–2099 weather.
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effect is dependent on soil type (Fig. 4a). Because, the

weed matures earlier than the crop (Fig. 3), the increas-

ing probability of late season moisture stress is not

reflected in an increase in the drought stress index for

the weed in the same way as the crop. However, the

difference in rooting profiles of the species appears to

shift the competitive balance in favour of the crop

under scenarios with more frequent periods of mois-

ture stress.

Discussion

The ability of the model to accurately describe the cur-

rent distribution of A. myosuroides under baseline condi-

tions, including the clear Northern limit for the species,

demonstrates the potential of the process-based

approach to predict the response of populations to

changes in land use, local soil conditions and climate.

As opposed to the correlative approach of habitat mod-

els, the eco-physiological model allowed the complex

interactions of changes in physiological constraints and

crop/weed competition in the context of spatially het-

erogeneous soil properties under climate change to be

quantified. As well as predicting shifts in distribution,

therefore, our approach facilitates the prediction of

changes in the impact of the weed in terms of weed

productivity and crop yield loss (previously termed the

‘damage niche’) to be quantified, with appropriate mea-

sures of uncertainty, on a regional scale. In the case of

A. myosuroides, a temperate C3 species, its potential
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Fig. 3 Impact of climate change on the phenology of wheat and Alopecurus myosuroides for three selected sites representing the north–

south climatic gradient in the United Kingdom: BO, Boulmer (1°36′W 55°25′N), SB, Sutton Bonington (1°13′W 52°49′N) and ST,

Starcross (3°27′W 50°37′N). The median julian day of germination and maturity for each site and time period is plotted with bars repre-

senting the 95% percentile derived from the 1500 yearly simulations for each period.
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impact as an agricultural weed was predicted to lessen

in response to more frequent and severe water stress

events although it may become more of a problem in

Scotland. It is likely that contrasting species, for exam-

ple C4 weeds which are common in Central or Southern

Europe, such as Ambrosia artemisiifolia, will respond dif-

ferently (Essl et al., 2009). A future application of the

model developed in this study will, therefore, be the

prediction of the probability of the establishment of

potentially invasive species as agricultural weeds

under climate change.

In the scenarios used in this study, no attempt was

made to account for changes in agronomy in response

to climate such as earlier drilling dates or a change in

cropping patterns or herbicide use. However, in real

systems weather and crop management are intricately

linked with the timing of operations, for example dril-

ling date, determined by local weather and characteris-

tics of the preceding crop. A change in cropping, for

example an increase in the proportion of spring crops

sown, would be expected to affect the damage niche of

a weed to a similar or larger degree as changes in the

climate. While the objective of this study was to isolate

the potential impact of climate on weeds, the process-

based approach also has the capacity to integrate data

on the likely effect of climate change on management

practices in the future.

The disadvantage of using a process-based approach

to modelling plant dynamics as opposed to correlative

habitat models is that the large number of eco-physio-

logical parameters require calibration for each species.

For a small number of weeds with a high economic

importance, empirical data are available in the weed

science literature to calibrate and validate the model

(Deen et al., 2003). However, alternative approaches

will need to be developed to extend the approach to the

wider weed community. One option is to develop

screening protocols for key model parameters, for

example the base temperature of germination (Steinm-

aus et al., 2000). Alternatively, it may be possible to esti-

mate model parameters from data on plant traits

available in ecological databases (Gardarin et al.,

2010b); for example seed mass can be related to a num-

ber of parameters determining germination and fecun-

dity (Gardarin et al., 2010a). An extension of this

approach would be to identify weed functional groups

or ideotypes with similar suites of functional traits and

responses to environmental change. Modelling the
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Fig. 4 (a) The drought stress index calculated for wheat and Alopecurus myosuroides competing for below ground resources under three

climate scenarios. (b) Observed differences in the rooting profiles of wheat and A. myosuroides sampled over 2 years in the field at

Rothamsted Research, UK (unpublished data).
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weed flora at the level of this level would facilitate the

prediction of more general functional shifts in weed

infestations, for example a shift from C3 to C4 species if

drought becomes a more dominant environmental

driver.

Finally a major challenge to any attempt to model the

impact of climate change on the damage niche of an

agricultural weed, regardless of whether it takes a cor-

relative or mechanistic approach, is the capacity of

weeds to adapt (Clements & Ditommaso, 2011). Failing

to account for the propensity of weeds with high fecun-

dity and short duration of population cycling to adapt

to new conditions, both through phenotypic plasticity

and genotypic adaptation, will lead to an under-esti-

mate possible shifts in distribution and impact. The

incorporation data on intra-specific variability within

weed species (particularly at the leading edge of its dis-

tribution) will, therefore, need to be an important com-

ponent of the future development of models of the type

used in this study.
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