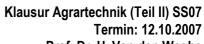


Klausur Agrartechnik (Teil II) SS07 Termin: 12.10.2007 Prof. Dr. H. Van den Weghe

Na	ame, Vorname:					
M	atrikelnummer:					
				3 1	Punkte	
1.	Welche Einflußfaktoren bestimmen das Ausmaß der Wärmeve durch Radiation?	rluste	e de	s Ti	erkörp	ers
•	Die Oberflächentemperatur der raumumschließenden Bauteile	[]			
•	Die Luftbewegung	[]			
•	Die relative Luftfeuchte	[]			
•	Die Wärmeleitfähigkeit der Bauteile	[]			
•	Die Größe der Körperoberfläche des Tieres	[]			
•	Die Körperoberflächentemperatur des Tieres	[]			
				4 I	Punkte	
2.	Thermoregulation homöothermer Tiere. Die Zone thermischer	Neut	ralit	ät		
•	ist die Zone mit der höchsten Wärmeerzeugung im Körper	[]			
•	schließt die Behaglichkeitszone nicht ein	[]			
•	ist die Zone, in der die Umwelttemperatur keinen Einfluß auf die Wärmeerzeugung im Tierkörper hat	[]			
•	ist bei allen Tierarten gleich	[]			
•	wird durch die Luftgeschwindigkeit beeinflußt	[]			
•	ist vom Haltungsverfahren abhängig	[]			
3.	Die Anteile an latenter und sensibler Wärmeabgabe bei Nutztie	eren		41	Punkte	
•	sind temperaturabhängig			[]	
•	verlaufen gegenläufig bei steigenden Lufttemperaturen			[]	
•	sind für die Berechnung der Lüftungsrate kaum von Bedeutung, da die Gesamtwärmeabgabe in die Berechnung eingeht			[]	


Name, Vorname:

Ma	atrikelnummer:		
		5	Punkte
4.	Der Wärmedurchgang pro Zeiteinheit durch ein Bauteil ist abhängig vo	n:	
•	der Temperaturdifferenz zwischen innen und außen	[]
•	der relativen Luftfeuchte	[]
•	der Luftgeschwindigkeit an der Grenzschicht	[]
•	der Dicke des Bauteils	[]
•	der Flächengröße des Bauteils	[]
•	der Wärmeübergangszahl (α)	[]
•	der Wärmeleitzahl (λ)	[]
•	der Dampfspannung (pi) im Bauteil	[]
•	des Wasserdampfdiffusionswiderstandes (μ)	[]
		F	Dunkto
5.	Das Wärmespeichervermögen von Bauteilen	J	Punkte
•	hat insbesondere mit dem spezifischen Gewicht des Materials zu tun	[]
•	ist identisch mit der Phasenverschiebung	[]
•	ist identisch mit der Amplitudendämpfung	[]
•	ist insbesondere für die Berechnung der Lüftungsrate von Bedeutung	[]
•	sagt nicht viel über die Qualität der Wärmedämmung aus	[]
•	hat eigentlich keinen Einfluß auf den Temperaturverlauf im Stall	[]

Na	me, Vorname:			
Ma	atrikelnummer:			
	5 Pui	nkte	è	
6.	6. Bei der Gegenüberstellung des Fließverhaltens einer rein viskosen Flüssigkeit (Newtonsche Flüssigkeit) und Rindergülle mit quasiplastischem Fließverhalten gilt:			
•	die untere Fließgrenze ist ein typisches Merkmal für Newtonsche Flüssigkeiten	[]	
•	die Schergeschwindigkeit ist nur bei Newtonschen Flüssigkeiten direkt proportional mit der Schubspannung	[]	
•	die Schergeschwindigkeit ist immer direkt proportional zu der Schubspannung	[]	
•	die Schergeschwindigkeit einer Newtonschen Flüssigkeit bei einer angelegten Schubspannung ist abhängig von der Viskosität der Flüssigkeit	[]	
•	die obere Fließgrenze charakterisiert das Ende der Fließkurve einer Flüssigkeit	[]	
•	der Trockensubstanzgehalt der Gülle hat keinen Einfluß auf seine Viskosität	[]	
	4 Punkte			
7.	Verhalten strömender Luft. Die Abnahme der axialen Luftgeschwindigkeit eines isothermen Luftstrahls ist unabhängig von:			
•	der Form der Zuluftöffnung	[]	
•	der Lage der Zuluftöffnung in der Wand gegenüber dem Boden oder der Decke	[]	
•	von der Zuluftgeschwindigkeit beim Lufteintritt	[]	
•	von der Raumgeometrie	[]	

Prof. Dr. H. Van den Weghe

Name, Vorname:	
Matrikelnummer:	
	5 Punkte
8. Die Luftvolumenstromberechnung (nach DIN 18910) für geschlossene	Ställe :
ist von den Wärmeverlusten über die Bauteile unabhängig	[]
• ist im Winter vom maximal zulässigen Kohlendioxidgehalt im Stall abhängig) []
ist für die Qualität der Stalluft relevant	[]
• ist für die Emissionsminderung (Gerüche, Gase) eingeführt worden	[]
ist abhängig von der Tierart	[]
ist abhängig von der maximal zulässigen Feuchte im Stall	[]
ist abhängig vom Leistungsniveau der Tiere	[]
ist abhängig vom Aufstallungsgewicht	[]
dient der Planung der erforderlichen minimalen und maximalen Leistung der Ventilatoren im Winter bzw. im Sommer	[]
dient der k-Wert Berechnung	[]
	5 Punkte
	3 Fullkle
9. Die Betriebskennlinien eines Ventilators sind:	
unabhängig vom statischen Druckwiderstand	[]
 relevant für den Verlauf des Volumenstroms bei zunehmendem statischen Druckwiderstand 	[]
• relevant für den spezifischen Stromverbrauch je m³ Luftvolumen	[]
relevant für das Regelverhalten und den Regelbereich eines Ventilators	[]
für die Planung einer Lüftungsanlage ohne Bedeutung	[]
für Axial- und Radialventilatoren identisch	[]

Klausur Agrartechnik (Teil II) SS07

Termin: 12.10.2007 Prof. Dr. H. Van den Weghe

Name, Vorname:		
Matrikelnummer:		
	5 Punkte)
10. Fütterungstechnik		
 Der Variationskoeffizient der Massendosierung von Trockenfutter -steigt bei Zunahme der ausdosierten Futtermasse pro Zuteilung/ -sinkt bei Zunahme der ausdosierten Futtermasse pro Zuteilung]]
 Der Variationskoeffizient ist bei gleicher Dosiermasse am höchsten bei -Volumendosierung von Mehlfutter -Volumendosierung von Pelletfutter -Massendosierung]]]]
Dehnungsmeßstreifen (DMS) werden eingesetzt -zur Gewichtserfassung auf elektrischen Wege -zur Steuerung der Drehzahl der Kreiselpumpe -um die Gewichtskraft auf einen Biegestab im Verhältnis zum Gewicht des Futtervorrates zu stellen kann zur ovekten Ausdesierung von Futter aus dem Flüssig.]]]]
-kann zur exakten Ausdosierung von Futter aus dem Flüssig- futterbehälter eingesetzt werden]]
	4 Punkte	þ
11. Kennliniendiagramme einer Kreiselpumpe		
 dienen der Ermittlung der aktuellen Betriebspunkte bei unterschiedlichen Leitungsquerschnitten der Förderleitungen 	[]
sind für Flüssigmist und reines Wasser identisch	[]
 zeigen, daß bei größeren Leitungsquerschnitten die Förderleistung bei sonst konstanten Bedingungen abnimmt 	[]
 geben Auskunft über das spezifische Druckverhalten unterschiedlicher Kreiselpumpen bei vergleichbaren Volumenstrombereichen 	[]
 zeigen hinsichtlich des Druckverhaltens viel Ähnlichkeit mit den Kennliniendiagrammen von Radialventilatoren 	[]

Klausur Agrartechnik (Teil II) SS07 Termin: 12.10.2007 Prof. Dr. H. Van den Weghe

N	lame, Vorname:		
M	Natrikelnummer:		
		2 Punkt	e
1:	2. Melktechnik		
D	Das Blindmelken kann <u>verhindert</u> werden durch		
•	Einsatz eines elektronisch gesteuerten anstatt eines mechanisch gesteuerten Pulsators	n []
•	Messung des Milchflusses am Ende des Hauptgemelks]]
•	kürzere Milchschläuche	[]
•	Milchflußendabschalter	[]
•	Verwendung eines milchflußangepaßten Melkvakuums	[]
•	Schaltung des Pulsators auf Entlastung bei einem Milchfluß unter 200g/min	[]
•	Einsatz eines Biomelkers	[]
•	eine elektronische Vorstimulation	[]
•	eine elektronische Milchmengenmessung	[]